OpenSees allows you to use both modal damping and stiffness proportional damping in a dynamic analysis. This combination of damping models is useful when you want to control damping in the low frequency modes and not let undamped high frequency response tarnish the analysis. Consider a simplified model of a 40 story building. The story … Continue reading Modal and Stiffness Proportional Damping
Tag: Damping
More Ado About Damping
Only a few years ago I realized that you do not have to use natural frequencies--you know, the ones you obtain from an eigenvalue analysis--to compute Rayleigh damping coefficients. This may not be news to some of you--I am often a little slow on the uptake. But I actually read a couple papers (here and … Continue reading More Ado About Damping
Quick (and Dirty) Modal Damping
Frank recently told me about "quick" modal damping and explained it as "adding the modal damping forces to the right-hand side but not adding the modal damping terms to the dynamic tangent". The rationale for "quick" modal damping is to reduce computational expense due to: Assembly of modal damping terms into the dynamic tangent must … Continue reading Quick (and Dirty) Modal Damping
Negative Feedback Loop
Although it has its proper uses, I'm not a fan of the linear algorithm. I'm even less of a fan of modal damping. However, it's totally reasonable to use these two analysis options together--and if you do, watch out! I'll walk you through a recent encounter with this lethal combination, experienced during a live presentation … Continue reading Negative Feedback Loop
Gimme All Your Modal Damping
The GimmeMCK integrator is one of my more useful contributions to OpenSees. This integrator allows you to extract the individual mass, damping, and stiffness matrices, or some linear combination therein, in order to see what's assembled in an OpenSees model or to bootstrap new functionality. While getting the mass and stiffness matrices seems to work, … Continue reading Gimme All Your Modal Damping
Much Ado About Damping
I do not remember why I was searching the internet for "damping" a couple weeks ago, but I came across this document on constructing a Rayleigh damping matrix, $latex {\bf C}=\alpha {\bf M}+\beta {\bf K}$. But instead of taking the usual approach of specifying damping ratios for exactly two frequencies of vibration, the document describes … Continue reading Much Ado About Damping
Last Committed Stiffness
With the rayleigh command, OpenSees allows you to input three stiffness proportional damping factors: 1) the current tangent stiffness, 2) the initial stiffness, and 3) the last committed stiffness. Each option has drawbacks. The current tangent stiffness is problematic because the tangent stiffness can change significantly at each iteration of the equilibrium solution algorithm. The … Continue reading Last Committed Stiffness
Rayleigh Damping Coefficients
One of the best examples of "offline" calculations you can easily avoid in OpenSees is Rayleigh damping coefficients. I've seen people hard code the mass and stiffness proportional damping coefficients in their OpenSees scripts, after computing said coefficients in another software, e.g., MATLAB, or on paper. Inevitably, it becomes difficult to keep your OpenSees model … Continue reading Rayleigh Damping Coefficients
Gimme All Your Damping, All Your Mass and Stiffness Too
Just because OpenSees is open source does not mean it is a fully transparent box. This is mostly because documentation has lagged behind development. So, pessimists would say the box is semi-opaque while optimists would characterize it as semi-transparent. But a few parts of OpenSees are definitely housed in an opaque box. Take, for instance, … Continue reading Gimme All Your Damping, All Your Mass and Stiffness Too
Be Careful with Modal Damping
Modal damping is kind of the it-spell in the dark art that is modeling viscous damping in structures. Although modal damping is pretty straightforward, you should be aware of an important aspect of its implementation in OpenSees. The issue, which is described in section 9 of this paper, is that OpenSees assembles the dynamic tangent … Continue reading Be Careful with Modal Damping